Qt 3D Basics

Kévin Ottens, Software Craftsman at KDAB

QtC}n

Qt 3D Basics

e Feature Set

e Entity Component System? Kezaco?
e Hello Donut

e Qt 3D ECS Explained

e Input Handling

e Drawing Basics

e Beyond the Tip of the Iceberg

e The Future of Qt 3D

QtC}n Qt 3D Basics p.2

Qt 3D Basics

e Feature Set

e Entity Component System? Kezaco?
e Hello Donut

e Qt 3D ECS Explained

e Input Handling

e Drawing Basics

e Beyond the Tip of the Iceberg

e The Future of Qt 3D

QtC}n Feature Set p.3

What is Qt 3D?

e |t is not about 3D!

e Multi-purpose, not just a game engine
e Soft real-time simulation engine

e Designed to be scalable

e Extensible and flexible

QtC}n Feature Set p.4

Simulation Engine

e The core is not inherently about 3D

e It can deal with several domains at once
o Al, logic, audio, etc.
o And of course it contains a 3D renderer too!

e All you need for a complex system simulation
o Mechanical systems
e Physics
e ... and also games

Q-[C}n Feature Set

p.5

Scalabillity

e Frontend / backend split
o Frontend is lightweight and on the main thread
o Backend executed in a secondary thread
o Where the actual simulation runs

e Non-blocking frontend / backend communication

e Backend maximizes throughput via a thread pool

Q-[C}n Feature Set

p.6

Extensibility and Flexibility

e Domains can be added via independent aspects
e ... only if there's not something fitting your needs already

e Provide both C++ and QML APIs

e Integrates well with the rest of Qt
o Pulling your simulation data from a database anyone?

e Entity Component System is used to combine behavior in your own objects
o No deep inheritance hierarchy

QtC}n Feature Set p.7

Qt 3D Basics

e Feature Set

e Entity Component System? Kezaco?
e Hello Donut

e Qt 3D ECS Explained

e Input Handling

e Drawing Basics

e Beyond the Tip of the Iceberg

e The Future of Qt 3D

QtC}n Entity Component System? Kezaco? p.8

ECS: Definitions

e ECS is an architectural pattern
o Popular in game engines
o Favors composition over inheritance

e An entity is a general purpose object
e An entity gets its behavior by combining data

e Data comes from typed components

QtC}n Entity Component System? Kezaco?

p.9

Composition vs Inheritance

e Let's analyse a familiar example: Space Invaders

OtC}n Entity Component System? Kezaco? p.10

Composition vs Inheritance cont'd

e Typical inheritance hierarchy

RenderableOhject

MoveableObject StationaryObject

—[}[MonPlayerCharacter]<]7 [PlayerObject] [Blockade] l Ground J

[Spacelnvader } [FlyingSaumrBossI

=n
o

QtC}n Entity Component System? Kezaco? p.11

Composition vs Inheritance cont'd

e All fine until customer requires new feature:

Object

>‘ RenderableOhject }<

MoveableObject
—[}[MonPlayerCharacter]<]7 [PlayerObject] [Blockade] [Ground J

[Spacelnvader } [FIyingSaucerEasaJ

StationaryObject

I SoundEmitter?]

QtC}n Entity Component System? Kezaco? p.12

Composition vs Inheritance cont'd

e Typical solution: Add feature to base class

Object

>< RenderableSoundEmitter }(l—

MoveableObject
—[}[MonPlayerCharacter]<]7 [PlayerObject] [Blockade] [Ground J

[Spacelnvader } [FIyingSaucerEasaJ

StationaryObject

QtC}n Entity Component System? Kezaco? p.13

Composition vs Inheritance cont'd

e Doesn't scale:

Object

ﬂi{ RenderableSoundEmitterPhysicsAnimatedCollidable AlUberObject }jﬁ

MoveableObject
—[}[MonPlayerCharacter]<]7 [PlayerObject] [Blockade] [Ground J

‘ Spacelnvader | FlyingSaucerBoss I

StationaryObject

QtC}n Entity Component System? Kezaco? p.14

Composition vs Inheritance cont'd

e What about multiple inheritance?

QtC}n

RenderableObject SoundEmitter

FlayerObject

Entity Component System? Kezaco?

p.15

Composition vs Inheritance cont'd

e What about mix-in multiple inheritance?

Object

>| RenderableQbject |

MoveableObject SoundEmitter
—[}{ MonPlayerCharacter]{]7 [PlayerObject

SoundEmitter

SoundEmitter

l Spacelnvader FlyingSaucerBoss

QtC}n Entity Component System? Kezaco? p.16

Composition vs Inheritance cont'd

e Does it scale?

Object

>‘ RenderableOhject }<
W PlayerObject \ ‘ Blockade | | Ground I
‘ Spacelnvader | FlyingSaucerBoss I

| SoundEmitter | I Physics I Input I Pickupltem \ | Callidable H I

QtC}n Entity Component System? Kezaco? p.17

StationaryObject

Composition vs Inheritance cont'd

e Is inheritance flexible enough?

Object

Maoveable

Renderable

Collidable

T

[Animating }
[FPhysical

QtC}n Entity Component System? Kezaco? p.18

Composition vs Inheritance cont'd

e Inheritance:
o Relationships baked in at design time.
o Complex inheritance hierarchies: deep, wide, multiple inheritance
o Features tend to migrate to base class

e Entity Component System
o Allows changes at runtime
o Avoids inheritance limitations
o Has additional costs:
o More QObjects
o Different to most OOP developer's experience

o We don't have to bake in assumptions to Qt 3D that we can't later
change when adding features.

QtC}n Entity Component System? Kezaco? p.19

Qt 3D Basics

e Feature Set

e Entity Component System? Kezaco?
e Hello Donut

e Qt 3D ECS Explained

e Input Handling

e Drawing Basics

e Beyond the Tip of the Iceberg

e The Future of Qt 3D

QtC}n Hello Donut p.20

Hello Donut (QML)

e Good practice having root
Entity to represent the

scene

e One Entity per "object" in
the scene

e Objects given behavior by
attaching component
subclasses

e For an Entity to be drawn it
needs:

o A mesh geometry
describing its shape

o A material describing its
surface appearance

Demo qt3d/ex-hellodonut-gml

OtCn

Hello Donut

p.21

qmlElement://Entity
qmlElement://Entity
qmlElement://Entity

C++ API vs QML API

e QML API is a mirror of the C++ API
e C++ class names like the rest of Qt

e QML element names just don't have the Q in front
o Qt3DCore: :QNode vs Node
o Qt3DCore: :QEntity vs Entity

© ...

Q‘[C}n Hello Donut

p.22

class://Qt3DCore::QNode
qmlElement://Node
class://Qt3DCore::QEntity
qmlElement://Entity

Qt 3D Basics

e Feature Set

e Entity Component System? Kezaco?
e Hello Donut

e Qt 3D ECS Explained

e Input Handling

e Drawing Basics

e Beyond the Tip of the Iceberg

e The Future of Qt 3D

QtC}n Qt 3D ECS Explained p.23

Everything is a QNode

e Qt3DCore: :QNode is the base type for everything
o It inherits from QObject and all its features
o Internally implements the frontend/backend communication

e Qt3DCore: :QEntity
o It inherits from Qt3DCore: :QNode
o It just aggregates Qt3DCore: :QComponents

e Qt3DCore: :QComponent
o It inherits from Qt3DCore: :QNode
o Actual data is provided by its subclasses
o Qt3DCore: :QTransform
o Qt3DRender: :QMesh
o Qt3DRender: :QMaterial

° ...

QtC}n Qt 3D ECS Explained p.24

class://Qt3DCore::QNode
class://QObject
class://Qt3DCore::QEntity
class://Qt3DCore::QNode
class://Qt3DCore::QComponent
class://Qt3DCore::QComponent
class://Qt3DCore::QNode
class://Qt3DCore::QTransform
class://Qt3DRender::QMesh
class://Qt3DRender::QMaterial

Everything is a QNode cont'd

Adds unigue ID and communication to aspects

QEntity

1 - { QComponent | \ertical slice of data/behavior

Simulated object. Aggregates components

QtC}n Qt 3D ECS Explained p.25

You Still Need a System

e The simulation is executed by Qt3DCore: :QAspectEngine

e Qt3DCore: :QAbstractAspect subclass instances are registered on the
engine
o Behavior comes from the aspects processing component data
o Aspects control the domains manipulated by your simulation

e Qt 3D provides
o Qt3DRender: :QRenderAspect
o QE3DInput: :QInputAspect
o Qt3DLogic: :QLogicAspect

e Note that aspects have no API of their own
o It is all provided by Qt3DCore: :QComponent subclasses

Q‘[C}n Qt 3D ECS Explained p.26

class://Qt3DCore::QAspectEngine
class://Qt3DCore::QAbstractAspect
class://Qt3DRender::QRenderAspect
class://Qt3DInput::QInputAspect
class://Qt3DLogic::QLogicAspect
class://Qt3DCore::QComponent

Qt 3D Basics

e Feature Set

e Entity Component System? Kezaco?
e Hello Donut

e Qt 3D ECS Explained

e Input Handling

e Drawing Basics

e Beyond the Tip of the Iceberg

e The Future of Qt 3D

QtC}n Input Handling p.27

Physical Devices

e To handle input we first need to generate input events

e Subclasses of Qt3DInput: :QAbstractPhysicalDevice represent input
devices

o Qt3DInput: :QKeyboardDevice
o Qt3DInput: :QMouseDevice

o Others can be added later

e On it's own a device doesn't do much
o Input handlers expose signals emitted in response to events

QtC}n Input Handling p.28

class://Qt3DInput::QAbstractPhysicalDevice
class://Qt3DInput::QKeyboardDevice
class://Qt3DInput::QMouseDevice

Picking

e High level picking provided by Qt3DRender: :Q0bjectPicker component

o Implicitly associated with mouse device
o Uses ray-cast based picking

e Qt3DRender::Q0bjectPicker emits signals for you to handle:
o pressed(), released(), clicked()

e moved() - only when s true
o entered(), exited() - only when is true
e The property provides a more declarative alternative to

entered(), exited()

Q‘[C}n Input Handling p.29

class://Qt3DRender::QObjectPicker
class://Qt3DRender::QObjectPicker

Physical Devices vs Logical Devices

e Physical devices provide only discrete events
e Hard to use them to control a value over time

e Logical device provides a way to:
e Have an analog view on a physical device
o Aggregate several physical devices in a unified device

OtC}n Input Handling

p.30

Logical Input Action

e Qt3DInput: :QAction provides a binary value

e It is activated by some input, can be:
e A single button input with Qt3DInput: :QActionInput

o A simultaneous combination of button inputs with
Qt3DInput: :QInputChord

o A sequence of button inputs with Qt3DInput::QInputSequence

e When the action state changes the active property is toggled

Demo qt3d/ex-logical-input-qml

Q‘[C}n Input Handling p.31

class://Qt3DInput::QAction
class://Qt3DInput::QActionInput
class://Qt3DInput::QInputChord
class://Qt3DInput::QInputSequence

Logical Input Axis

e Qt3DInput: :QAxis provides an analog value between -1 and

e It varies over time when some input is generated, can be:
e When a physical axis varies with Qt3DInput: :QAnalogAxisInput
o While a button is pressed with Qt3DInput::QButtonAxisInput

e When the axis state changes the value property changes

Demo qt3d/ex-logical-axes-qml

Q‘[C}n Input Handling p.32

class://Qt3DInput::QAxis
class://Qt3DInput::QAnalogAxisInput
class://Qt3DInput::QButtonAxisInput

Putting it All Together: Moving Boxes

e Focus managed using tab

e Focused box appears bigger

e The arrows move the box on the plane

e Page up/down rotate the box on its Y axis
e Boxes light up when on mouse hover

e Clicking on a box gives it the focus

e Boxes can be moved around with the mouse

Demo qt3d/sol-moving-boxes-qml-step3

QtC}n Input Handling p.33

Qt 3D Basics

e Feature Set

e Entity Component System? Kezaco?
e Hello Donut

e Qt 3D ECS Explained

e Input Handling

e Drawing Basics

e Beyond the Tip of the Iceberg

e The Future of Qt 3D

QtC;)n Drawing Basics 0.34

The Scene Graph

e The scene graph provides the spatial representation of the simulation
o Qt3DCore: :QEntity: what takes part in the simulation

e Qt3DCore: :QTransform: where it is, what scale it is, what orientation it
has

e Hierarchical transforms are controlled by the parent/child relationship
e Similar to QWidget, QQuickItem, etc.

e If the scene is rendered, we need a point of view on it
o This is provided by Qt3DRender: :QCamera

QtC}n Drawing Basics p.35

class://Qt3DCore::QEntity
class://Qt3DCore::QTransform
class://QWidget
class://QQuickItem
class://Qt3DRender::QCamera

Qt3DCore::QTransform

e Inherits from Qt3DCore: :QComponent
e Represents an affine transformation

e Three ways of using it:
e Through properties: , ,
o Through helper functions: rotateAround()
o Through the property

e Transformations are applied:
o to objects in Scale/Rotation/Translation order
o to coordinate systems in Translation/Rotation/Scale order

e Transformations are multiplied along the parent/child relationship

QtC}n Drawing Basics p.36

class://Qt3DCore::QComponent

Transforms cont'd

1 import Qt3D.Core 2.0
2
3 Entity {
4 components: [
5 Transform {
6 scale3D: Qt.vector3d(1, 2, 1.5)
7 translation: Qt.vector3d(0, 0, -1)
8 }
9]
10
11 Entity {
12 components: [
13 Transform { translation: Qt.vector3d(0, 1, 0) }
14]
15 }
16 } QEntity e ik po Lol
| roctEntity) :
QTransform J
(rootTransform)
[QIEnfity i f?rjﬂfh?nents

l (childEntity) .

CTransform
(child Transform)

QtC}n Drawing Basics p.37

Geometries

e Qt3DRender : :QRenderAspect draws
Qt3DCore: :QEntitys with a shape

e Qt3DRender: :QGeometryRenderer's
geometry property specifies the
shape

e Qt 3D provides convenience
subclasses of
Qt3DRender: :QGeometryRenderer:

o Qt3DExtras: :QSphereMesh

o Qt3DExtras: :QCuboidMesh

o Qt3DExtras: :QPlaneMesh

o Qt3DExXtras: :QTorusMesh

o Qt3DExtras: :QConeMesh

o Qt3DExtras::QCylinderMesh

Qt Demo examples/qt3d/basicshapes-cpp

O‘tCn Drawing Basics p.38

class://Qt3DRender::QRenderAspect
class://Qt3DCore::QEntity
class://Qt3DRender::QGeometryRenderer
class://Qt3DRender::QGeometryRenderer
class://Qt3DExtras::QSphereMesh
class://Qt3DExtras::QCuboidMesh
class://Qt3DExtras::QPlaneMesh
class://Qt3DExtras::QTorusMesh
class://Qt3DExtras::QConeMesh
class://Qt3DExtras::QCylinderMesh

Materials

e If a Qt3DCore: :QEntity only has a
shape it will appear black

e The Qt3DRender: :QMaterial

component provides a surface
appearance

e Qt 3D provides convenience subclasses
of Qt3DRender : :QMaterial:

o Qt3DExtras: :QPhongMaterial

o Qt3DExtras: :QPhongAlphaMaterial
o Qt3DExtras: :QDiffuseMapMaterial
o Qt3DExtras: :QDiffuseSpecularMapMaterial
o Qt3DExtras: :QGoochMaterial

© ...

Demo qt3d/sol-textured-scene

O‘[Cn Drawing Basics p.39

class://Qt3DCore::QEntity
class://Qt3DRender::QMaterial
class://Qt3DRender::QMaterial
class://Qt3DExtras::QPhongMaterial
class://Qt3DExtras::QPhongAlphaMaterial
class://Qt3DExtras::QDiffuseMapMaterial
class://Qt3DExtras::QDiffuseSpecularMapMaterial
class://Qt3DExtras::QGoochMaterial

Lights

e Even with shapes and materials we would see nothing

e We need some lights
o ... luckily Qt 3D sets a default one for us if none is provided

e In general we want some control of the scene lighting

e Qt 3D provides the following light types:
o DirectionallLight
o PointLight
o SpotLight

Lab qt3d/ex-lights-qgml

QtC}n Drawing Basics p.40

qmlElement://DirectionalLight
qmlElement://PointLight
qmlElement://SpotLight

Qt 3D Basics

e Feature Set

e Entity Component System? Kezaco?
e Hello Donut

e Qt 3D ECS Explained

e Input Handling

e Drawing Basics

e Beyond the Tip of the Iceberg

e The Future of Qt 3D

QtC}n Beyond the Tip of the Iceberg p.41

Making your Own Geometries

e Using Qt3DRender : :QBuffer we can create our own vertices
e GeometryRenderer controls how buffers are combined and parsed

e Useful to make you own geometries programmatically:
e From a function
o From data sets
e From user interaction

Demo qt3d/ex-surface-function

QtC}n Beyond the Tip of the Iceberg p.42

class://Qt3DRender::QBuffer
qmlElement://GeometryRenderer

Texture Composition and Filtering

e Possible to sample several textures in a single material
e Also easy to reuse stock lighting model

e Then you can blend as you see fit in the shader

Demo qt3d/sol-earth

QtC}n Beyond the Tip of the Iceberg p.43

Procedural Textures

e Lots of examples available on the Internet
o https://www.shadertoy.com/
o Usually written for WebGL or OpenGL ES 2
o May require some adaptation
o Many are far from simple!

e But they are easy to plug in the Material system and to parameterize

Demo qt3d/ex-plasma

QtC}n Beyond the Tip of the Iceberg p.44

https://www.shadertoy.com/
qmlElement://Material

Integrating with QtQuick using Scene3D

e Provided by the QtQuick.Scene3D module
e Takes an Entity as child which will be your whole scene

e Loaded aspects are controlled with the aspects property

e Hover events are only accepted if the hoverEnabled property is true

Demo qt3d/ex-controls-overlay

QtC}n Beyond the Tip of the Iceberg p.45

qmlElement://QtQuick.Scene3D
qmlElement://Entity

And more...

e Layer management

e Own materials and lighting models

e Texture mipmaps

e Cube Maps

e Portability of your code accross several OpenGL versions

e Complete control over the rendering algorithm

e Loading complete objects or scenes from files (3ds, collada, gml...)
e Post-processing effects (single or multi-pass)

e Instanced rendering

e etc.

Demo qt3d/ex-multiple-effects

Demo qt3d/sol-asteroids

QtC}n Beyond the Tip of the Iceberg p.46

Qt 3D Basics

e Feature Set

e Entity Component System? Kezaco?
e Hello Donut

e Qt 3D ECS Explained

e Input Handling

e Drawing Basics

e Beyond the Tip of the Iceberg

e The Future of Qt 3D

QtC}n The Future of Qt 3D p.47

What does the future hold for Qt 3D?

e Qt 3D Core
o Efficiency improvemments
o Backend threadpool and job handling improvements - jobs spawning jobs

e Qt 3D Render
o Use Qt Quick or QPainter to render into a texture
o Embed Qt Quick into Qt 3D including input handling
o Level of Detail (LOD) support for meshes
e Billboards - camera facing entities
o Text support - 2D and 3D
o Additional materials such as Physics Based Rendering (PBR) materials
e Particle systems

e Qt 3D Input

o Axis inputs that apply cumulative axis values as position, velocity or
acceleration

o Additional input device support
o 3D mouse controllers, game controllers
o Enumerated inputs such as 8-way buttons, hat switches or dials

QtC}n The Future of Qt 3D p.48

What does the future hold for Qt 3D?

e New aspects:
o Collision Detection Aspect
o Allows to detect when entities collide or enter/exit volumes in space
o Animation Aspect
o Keyframe animation
o Skeletal animation
o Morph target animation
o Removes animation workload from main thread
o Physics Aspect
e Rigid body and soft body physics simulation
o Al Aspect, 3D Positional Audio Aspect ...

e Tooling:
o Design time tooling - scene editor
o Build time tooling - asset conditioners for meshes, textures etc.

Q‘[C}n The Future of Qt 3D p.49

Thank you!

www.kdab.com

kevin.ottens@kdab.com

