28
A ka d e m v Almerfa, 22nd - 27th July 2017

Advances In Qt 3D

Kévin Ottens, Software Craftsman at KDAB

,&kademy

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\kad@m\)/ Advances in Qt 3D p.2

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\kad@m\)/ Feature Set p.3

What is Qt 3D?

e |t is not about 3D!

e Multi-purpose, not just a game engine
e Soft real-time simulation engine

e Designed to be scalable

e Extensible and flexible

E\kad@m\)/ Feature Set p.4

Simulation Engine

e The core is not inherently about 3D

e It can deal with several functional domains at once
o Al, logic, audio, etc.
o And of course it contains a 3D renderer too!

e All you need for a complex system simulation
o Mechanical systems
e Physics
e ... and also games

E\kad@m\)/ Feature Set p.5

Scalabillity

e Frontend / backend split
o Frontend is lightweight and on the main thread
o Backend executed in a secondary thread
o Where the actual simulation runs

e Non-blocking frontend / backend communication

e Backend maximizes throughput via a thread pool

e
Akad@m\)/ Feature Set

p.6

Extensibility and Flexibility

e Functional domains can be added by extending the runtime
e ... only if there's not something fitting your needs already

e Provide both C++ and QML APIs

e Integrates well with the rest of Qt
o Pulling your simulation data from a database anyone?

e Entity Component System is used to combine behavior in your own objects
o No deep inheritance hierarchy

E\kad@m\)/ Feature Set p.7

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

bl
Akad@m\)/ Entity Component System? What's that? p.8

ECS: Definitions

e ECS is an architectural pattern
o Popular in game engines
o Favors composition over inheritance

e An entity is a general purpose object
e An entity gets its behavior by combining data

e Data comes from typed components

b
' ? What's that?
Akad@m\)/ Entity Component System at's tha

p.9

Entity Component System

e The Entity/Component data split gives flexibility to manage the API

e The System separation moves the behavior away from data avoiding
dependencies between Components

: * * <=abstract==
Entky C Component

‘ Physical Data ' Transform Data l Shape Data Animation Data

System e
Implementation | |

Physics Simulator | Morph Animator |

bl
' ? - ”?
Akad@m\)/ Entity Component System? What's that” p.10

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\kad@m\)/ Hello Donut p.11

Hello Donut (QML)

e Good practice having root
Entity to represent the

scene

e One Entity per "object" in
the scene

e Objects given behavior by
attaching component
subclasses

e For an Entity to be drawn it
needs:

o A mesh geometry
describing its shape

o A material describing its
surface appearance

Demo qt3d/ex-hellodonut-gml

E\kadem\/ Hello Donut p.12

qmlElement://Entity
qmlElement://Entity
qmlElement://Entity

C++ API vs QML API

e QML API is a mirror of the C++ API
e C++ class names like the rest of Qt

e QML element names just don't have the Q in front
o Qt3DCore: :QNode vs Node
o Qt3DCore: :QEntity vs Entity

© ...

E\kad@m\)/ Hello Donut p.13

class://Qt3DCore::QNode
qmlElement://Node
class://Qt3DCore::QEntity
qmlElement://Entity

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\kad@m\)/ Input Handling p.14

Previously in Input Handling

e Physical devices such as KeyboardDevice and MouseDevice produce events

e Handlers such as KeyboardHandler and MouseHandler:

o Process events by converting events to signals for user code to react to

o Are components that should be added to Entitys to provide behavior
related to input

e ObjectPicker provides high-level picking functionality

e LogicalDevices:

o Allow analog axis values to be produced
o Allow mapping multiple physical devices onto Axis and Action elements

E\kad@m\)/ Input Handling p.15

qmlElement://KeyboardDevice
qmlElement://MouseDevice
qmlElement://KeyboardHandler
qmlElement://MouseHandler
qmlElement://Entity
qmlElement://ObjectPicker
qmlElement://LogicalDevice
qmlElement://Axis
qmlElement://Action

How to Control a Value over Time?

e Obviously using an Axis
e But we got only the axis position...

e Force us to use imperative code executed in the main thread
o Typically increment a value based on the axis position
o Needs to sample over time (and eventually integrate!)

e Or use AxisAccumulator which does it for you

e Manage the value over time based on an input axis
o Can treat the axis position as a velocity or an acceleration
o All the work is done in secondary threads

E\kad@m\)/ Input Handling

p.16

qmlElement://Axis
qmlElement://AxisAccumulator

Axis Accumulator (since 5.8)

import Qt3D.Input 2.9

axes: Axis {
id: mouseYAXxis
AnalogAxisInput {

1
2
3
4 LogicalDevice {
5
6
7
8 sourceDevice: mouseDevice

9 axis: MouseDevice.Y
10 }

11 }

12 }

13

14 AxisAccumulator {

15 sourceAxis: mouseYAXxis

16 sourceAxisType: AxisAccumulator.Velocity
17 scale: 50

18 // Can bind on value

19 }

Demo qt3d/sol-moving-boxes-gmli-step3

Demo qt3d/sol-moving-boxes-gml-step4

E\kadem\/ Input Handling p.17

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\ka d @m\)/ Animation with Qt 3D p.18

Animation Support in Qt 3D

e You could use QtQuick animations but...
o They are executed on the main thread
o They are not synchronized with the Qt 3D engine frame rate

e Instead, you can have animations in the Qt 3D engine by registering the
Qt3DAnimation: :QAnimationAspect

e Like any other aspect it then provides API, mainly types inheriting from:

o AbstractAnimationClip which contain the data representing a given
animation

e AbstractClipAnimator, Components which run clips and map them to
other components properties

E\ka d @m\)/ Animation with Qt 3D p.19

class://Qt3DAnimation::QAnimationAspect
qmlElement://AbstractAnimationClip
qmlElement://AbstractClipAnimator
qmlElement://Component

AnimationClip, a Key Frame Based Clip

e AnimationClip represents a key frame based clip

e It holds the AnimationClipData in its property
e Currently AnimationClipData instances can only be created from C++

e Clip data has a set of QChannel describing the properties know to the clip

e Each QChannel has one or more QChannelComponent allowing to represent
complex types

o Typically a color channel has three channel components

e A QChannelComponent is a list of key frames for the given channel
component

E\ka d @m\)/ Animation with Qt 3D p.20

qmlElement://AnimationClip
qmlElement://AnimationClipData
qmlElement://AnimationClipData
class://QChannel
class://QChannel
class://QChannelComponent
class://QChannelComponent

AnimationClipLoader

e Creating a AnimationClip and its data can be tedious and hard to maintain

e Also it is not accessible to artists

e AnimationClipLoader can load a clip from a JSON file
e The format is easy to export from a design tool
o Currently a plugin for Blender is available

1 import Qt3D.Animation 2.9

2

3

4 AnimationClipLoader { source: "grc:/animation.json" }
5

Demo qt3d/ex-animationclip-loader

E\ka d em\/ Animation with Qt 3D p.21

qmlElement://AnimationClip
qmlElement://AnimationClipLoader

How to Run an Animation Clip?

1 import Qt3D.Animation 2.9

2 ...

3 ClipAnimator {

4 clip: AnimationClipLoader { source: "qrc:/animation.json" }
5

6 channelMapper: ChannelMapper {
7 ChannelMapping {

8 channelName: "Location"
9 target: transform

10 property: "translation"
11 }

12 ChannelMapping {

13 channelName: "Rotation"
14 target: transform

15 property: "rotation"

16 }

17 ChannelMapping {

18 channelName: "Color"

19 target: material

20 property: "ambient"

21 }

22 }

23 }

24

Demo qt3d/ex-animationclip-loader

E\ka d em\/ Animation with Qt 3D p.22

Animation Blending

e It is often useful to combine several animations into one

e Makes it easier to tune simpler animations separately, then let the engine
combine them

e This is done via blending operators
e Makes it possible to create new variations from a basic set of animations

e Typical examples in games are:
o A character walking then starting to run

o A character jumping while walking or during the transition between
walking and running

E\kad@m\)/ Animation with Qt 3D

p.23

BlendedClipAnimator

import Qt3D.Animation 2.9

1

2 ...

3 BlendedClipAnimator {

4 blendTree: AdditiveClipBlend {
5 additiveFactor: 0.4

6 baseClip: LerpClipBlend {

7 blendFactor: 0.2

8 startClip: ClipBlendValue {

9 clip: AnimationClipLoader { source: "qrc:/walk.json" }
10 }

11 endClip: ClipBlendValue {

12 clip: AnimationClipLoader { source: "qgrc:/run.json" }
13 }

14 }

15 additiveClip: ClipBlendValue {

16 clip: AnimationClipLoader { source: "qrc:/jump.json" }

17 }

18 1}

19

Demo qt3d/sol-toyplane-pilot

E\ka d em\/ Animation with Qt 3D p.24

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\kad@m\)/ New PBR Materials p.25

Metal/Rough Materials

e Qt 3D 5.9 introduces two new materials with much more realistic rendering
o Qt3DExtras: :QMetalRoughMaterial
o Qt3DExtras: :QTexturedMetalRoughMaterial

e This is based on proper physics to model the lighting

e It also introduces new richer lights

Qt Demo qt3d-examples/pbr-textured-cube

Qt Demo qt3d-examples/pbr-sphere

Qt Demo qt3d-examples/pbr-spheres

E\ka d em\/ New PBR Materials p.26

class://Qt3DExtras::QMetalRoughMaterial
class://Qt3DExtras::QTexturedMetalRoughMaterial

Environment Light (since 5.9)

1 import Qt3D.Core 2.0
2 import Qt3D.Render 2.9

3

4

5 components: [

6 EnvironmentLight {

7 irradiance: TextureLoader { ... }
8 specular: TextureLoader { ... }
9 }

10]

Demo qt3d/ex-lights-gml

E\ka d em\/ New PBR Materials p.27

Sky Box (since 5.9)

1 import Qt3D.Extras 2.9

2

3

4 SkyboxEntity {

5 baseName: "radianceTexture"

6 extension: ".dds"

7 gammaCorrect: true // Since 5.9
8 }

Demo qt3d/ex-lights-gml

E\ka d em\/ New PBR Materials p.28

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\k 3 d fa m\)/ Painted Textures p.29

Integrating QPainter Code (since 5.8)

e Often, we have legacy QPainter code
e Needs integration to be usable with Textures

e Provided by Qt3DRender: :QPaintedTextureImage

o Inherit from it
o Override the paint () function

o Use like any other TextureImage

Demo qt3d/ex-painted-cube

E\ka d em \}/ Painted Textures

p.30

class://QPainter
qmlElement://Texture
class://Qt3DRender::QPaintedTextureImage
qmlElement://TextureImage

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\ka d fa m\)/ Integrating Qt Quick with Qt 3D again p.31

The Scene2D Element (since 5.9)

e Provided by the QtQuick.Scene2D module
e Takes an Item as child which will be your whole 2D scene

e It renders the 2D scene into a RenderTargetOutput controlled by the
output property
o Its texture can be used by any material

e The entities property allows to declare on which entities the texture will be
used

o Necessary for mouse event handling

o Requires PickingSettings.TrianglePicking to be set to have the triangle
information

e Mouse events are only accepted if the mouseEnabled property is true

Demo qt3d/ex-samegame

E\ka d o m\/ Integrating Qt Quick with Qt 3D again p.32

qmlElement://QtQuick.Scene2D
qmlElement://Item
qmlElement://RenderTargetOutput

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

X : :
Aka d fa m\)/ Capturing the Rendering p.33

The RenderCapture Element (since 5.9)

e Allows to create screenshots of the scene rendering

e Also allows to debug complex multi-pass rendering
o One can save as an image one of the intermediate steps

e RenderCapture is a FrameGraphNode

e Each time a capture is needed, a call to requestCapture() is necessary
o Such requests are processed asynchronously

E\ka d fa m\)/ Capturing the Rendering p.34

qmlElement://RenderCapture
qmlElement://FrameGraphNode

Debugging Multi-Pass Rendering

e The scene allows to select objects by clicking
on them

e A selected object glows

e The effect is implemented using a multi-pass
render

e With RenderCapture it is easier to see what
each stage is doing

Demo qt3d/sol-screenshot

ey
Aka d o m\/ Capturing the Rendering p.35

qmlElement://RenderCapture

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detail

e Displaying Text

e The Future of Qt 3D

E\kad@m\)/ Level of Detail p.36

Complex Objects vs Distance

e Scenes often contain complex objects
e Such objects are expensive to display
e Does it still make sense if they are far from the camera?
e With level of detail management, simpler objects can be displayed instead

e This feature is provided with LevelOfDetail and LevelOfDetaillLoader

E\kad@m\)/ Level of Detalil p.37

qmlElement://LevelOfDetail
qmlElement://LevelOfDetailLoader

The LevelOfDetail Element (since 5.9)

1 import Qt3D.Render 2.9

2

3

4 SphereMesh {

5 slices: rings

6 rings: [30, 6, 4][lod.currentIndex]
7 },

8 LevelOfDetail {

9 id: lod

10 camera: mainCamera

11 thresholds: [100, 500, 1000]

12 thresholdType: LevelOfDetail.DistanceToCameraThreshold
13 }

14

Demo qt3d/ex-lod

Demo qt3d/sol-ogrehead

E\kadem\/ Level of Detalil p.38

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\ka d fa m\)/ Displaying Text p.39

Extruded Text Meshes (since 5.9)

e Generating geometry out of text is done with
ExtrudedTextGeometry or ExtrudedTextMesh

e They can be used like any other Geometry or
GeometryRenderer

e font and text are controlled using properties

e The length of the extrusion is controlled with
the depth property

Demo qt3d/ex-text-3d

E\ka d fa m\/ Displaying Text p.40

qmlElement://ExtrudedTextGeometry
qmlElement://ExtrudedTextMesh
qmlElement://Geometry
qmlElement://GeometryRenderer

Distance Field Text (since 5.9)

e Distance field text is provided by
Text2DEntity

e This is a full fledged Entity to put in the
object tree

e font, color and text are controlled using
properties

e The size of the surface on which the text is
rendered can be controlled via width and
height

Demo qt3d/ex-text-2d

E\kad@m\)/ Displaying Text

p.41

qmlElement://Text2DEntity
qmlElement://Entity

Advances in Qt 3D

e Feature Set

e Entity Component System? What's that?
e Hello Donut

e Input Handling

e Animation with Qt 3D

e New PBR Materials

e Painted Textures

e Integrating Qt Quick with Qt 3D again
e Capturing the Rendering

e Level of Detaill

e Displaying Text

e The Future of Qt 3D

E\kad@m\)/ The Future of Qt 3D p.42

Shader Graphs (coming in 5.10)

e Currently difficult to reuse and tune materials
e Forced to fork the shader implementations...

e Introducing ShaderProgramBuilder which allows to load shaders from a
graph

e |[SON format

e Finer grained building blocks which can be reused and reorganized

E\kad@m\)/ The Future of Qt 3D p.43

qmlElement://ShaderProgramBuilder

Shader Graphs: QMetalRoughMaterial

worldPos
Irprat
subtract - normalize
eyePos
Irpudt
warldMormal - » normalize b Metal/Rough
Inpu
baseColor
Irpeat
fragColor
metalness
Il
roughness

Inpur

E\kad@m\)/ The Future of Qt 3D p.44

Shader Graphs cont'd

worldPos
Irprat

subtract - - narmalize

eyePos

Irpudt

warldMormal - » normalize » Metal/Rough

Irp

sample

. heatToColor
heatTexture

texCoord

It
fragColor

metalness

Il

roughness

Inpur

E\kad@m\)/ The Future of Qt 3D p.45

What does the future hold for Qt 3D?

e Qt 3D Core
o Efficiency improvemments
o Backend threadpool and job handling improvements - jobs spawning jobs

e Qt 3D Render
o Billboards - camera facing entities
o Particle systems

e Qt 3D Input
o Additional input device support
o 3D mouse controllers, game controllers
o Enumerated inputs such as 8-way buttons, hat switches or dials

E\kad@m\)/ The Future of Qt 3D p.46

What does the future hold for Qt 3D?

e New aspects:
o Collision Detection Aspect
o Allows to detect when entities collide or enter/exit volumes in space
o Animation Aspect
o Skeletal animation
o Morph target animation
o Removes animation workload from main thread
o Physics Aspect
e Rigid body and soft body physics simulation
o Al Aspect, 3D Positional Audio Aspect ...

e Tooling:
o Design time tooling - scene editor
o Build time tooling - asset conditioners for meshes, textures etc.

E\kad@m\)/ The Future of Qt 3D p.47

Thank you!

www.kdab.com

kevin.ottens@kdab.com

