
Advances	in	Qt	3D
Kévin	Ottens,	Software	Craftsman	at	KDAB



Advances	in	Qt	3D

Advances	in	Qt	3D p.2

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



Advances	in	Qt	3D

Feature	Set p.3

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



What	is	Qt	3D?

Feature	Set p.4

It	is	not	about	3D!

Multi-purpose,	not	just	a	game	engine

Soft	real-time	simulation	engine

Designed	to	be	scalable

Extensible	and	flexible



Simulation	Engine

Feature	Set p.5

The	core	is	not	inherently	about	3D

It	can	deal	with	several	functional	domains	at	once
AI,	logic,	audio,	etc.
And	of	course	it	contains	a	3D	renderer	too!

All	you	need	for	a	complex	system	simulation
Mechanical	systems
Physics
...	and	also	games



Scalability

Feature	Set p.6

Frontend	/	backend	split
Frontend	is	lightweight	and	on	the	main	thread
Backend	executed	in	a	secondary	thread
Where	the	actual	simulation	runs

Non-blocking	frontend	/	backend	communication

Backend	maximizes	throughput	via	a	thread	pool



Extensibility	and	Flexibility

Feature	Set p.7

Functional	domains	can	be	added	by	extending	the	runtime
...	only	if	there's	not	something	fitting	your	needs	already

Provide	both	C++	and	QML	APIs

Integrates	well	with	the	rest	of	Qt
Pulling	your	simulation	data	from	a	database	anyone?

Entity	Component	System	is	used	to	combine	behavior	in	your	own	objects
No	deep	inheritance	hierarchy



Advances	in	Qt	3D

Entity	Component	System?	What's	that? p.8

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



ECS:	Definitions

Entity	Component	System?	What's	that? p.9

ECS	is	an	architectural	pattern
Popular	in	game	engines
Favors	composition	over	inheritance

An	entity	is	a	general	purpose	object

An	entity	gets	its	behavior	by	combining	data

Data	comes	from	typed	components



Entity	Component	System

Entity	Component	System?	What's	that? p.10

The	Entity/Component	data	split	gives	flexibility	to	manage	the	API

The	System	separation	moves	the	behavior	away	from	data	avoiding
dependencies	between	Components



Advances	in	Qt	3D

Hello	Donut p.11

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



Hello	Donut	(QML)

Hello	Donut p.12

Good	practice	having	root
Entity	to	represent	the
scene

One	Entity	per	"object"	in
the	scene

Objects	given	behavior	by
attaching	component
subclasses

For	an	Entity	to	be	drawn	it
needs:
A	mesh	geometry
describing	its	shape
A	material	describing	its
surface	appearance

Demo	qt3d/ex-hellodonut-qml

qmlElement://Entity
qmlElement://Entity
qmlElement://Entity


C++	API	vs	QML	API

Hello	Donut p.13

QML	API	is	a	mirror	of	the	C++	API

C++	class	names	like	the	rest	of	Qt

QML	element	names	just	don't	have	the	Q	in	front
Qt3DCore::QNode	vs	Node
Qt3DCore::QEntity	vs	Entity
...

class://Qt3DCore::QNode
qmlElement://Node
class://Qt3DCore::QEntity
qmlElement://Entity


Advances	in	Qt	3D

Input	Handling p.14

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



Previously	in	Input	Handling

Input	Handling p.15

Physical	devices	such	as	KeyboardDevice	and	MouseDevice	produce	events

Handlers	such	as	KeyboardHandler	and	MouseHandler:
Process	events	by	converting	events	to	signals	for	user	code	to	react	to
Are	components	that	should	be	added	to	Entitys	to	provide	behavior
related	to	input

ObjectPicker	provides	high-level	picking	functionality

LogicalDevices:
Allow	analog	axis	values	to	be	produced
Allow	mapping	multiple	physical	devices	onto	Axis	and	Action	elements

qmlElement://KeyboardDevice
qmlElement://MouseDevice
qmlElement://KeyboardHandler
qmlElement://MouseHandler
qmlElement://Entity
qmlElement://ObjectPicker
qmlElement://LogicalDevice
qmlElement://Axis
qmlElement://Action


How	to	Control	a	Value	over	Time?

Input	Handling p.16

Obviously	using	an	Axis

But	we	got	only	the	axis	position...

Force	us	to	use	imperative	code	executed	in	the	main	thread
Typically	increment	a	value	based	on	the	axis	position
Needs	to	sample	over	time	(and	eventually	integrate!)

Or	use	AxisAccumulator	which	does	it	for	you
Manage	the	value	over	time	based	on	an	input	axis
Can	treat	the	axis	position	as	a	velocity	or	an	acceleration
All	the	work	is	done	in	secondary	threads

qmlElement://Axis
qmlElement://AxisAccumulator


Axis	Accumulator	(since	5.8)

Input	Handling p.17

1 import	Qt3D.Input	2.9
2 ...
3
4 LogicalDevice	{
5     axes:	Axis	{
6         id:	mouseYAxis
7         AnalogAxisInput	{
8             sourceDevice:	mouseDevice
9             axis:	MouseDevice.Y
10         }
11     }
12 }
13
14 AxisAccumulator	{
15     sourceAxis:	mouseYAxis
16     sourceAxisType:	AxisAccumulator.Velocity
17     scale:	50
18     //	Can	bind	on	value
19 }

Demo	qt3d/sol-moving-boxes-qml-step3

Demo	qt3d/sol-moving-boxes-qml-step4



Advances	in	Qt	3D

Animation	with	Qt	3D p.18

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



Animation	Support	in	Qt	3D

Animation	with	Qt	3D p.19

You	could	use	QtQuick	animations	but...
They	are	executed	on	the	main	thread
They	are	not	synchronized	with	the	Qt	3D	engine	frame	rate

Instead,	you	can	have	animations	in	the	Qt	3D	engine	by	registering	the
Qt3DAnimation::QAnimationAspect

Like	any	other	aspect	it	then	provides	API,	mainly	types	inheriting	from:
AbstractAnimationClip	which	contain	the	data	representing	a	given
animation
AbstractClipAnimator,	Components	which	run	clips	and	map	them	to
other	components	properties

class://Qt3DAnimation::QAnimationAspect
qmlElement://AbstractAnimationClip
qmlElement://AbstractClipAnimator
qmlElement://Component


AnimationClip,	a	Key	Frame	Based	Clip

Animation	with	Qt	3D p.20

AnimationClip	represents	a	key	frame	based	clip

It	holds	the	AnimationClipData	in	its	clipData	property

Currently	AnimationClipData	instances	can	only	be	created	from	C++

Clip	data	has	a	set	of	QChannel	describing	the	properties	know	to	the	clip

Each	QChannel	has	one	or	more	QChannelComponent	allowing	to	represent
complex	types
Typically	a	color	channel	has	three	channel	components

A	QChannelComponent	is	a	list	of	key	frames	for	the	given	channel
component

qmlElement://AnimationClip
qmlElement://AnimationClipData
qmlElement://AnimationClipData
class://QChannel
class://QChannel
class://QChannelComponent
class://QChannelComponent


AnimationClipLoader

Animation	with	Qt	3D p.21

Creating	a	AnimationClip	and	its	data	can	be	tedious	and	hard	to	maintain

Also	it	is	not	accessible	to	artists

AnimationClipLoader	can	load	a	clip	from	a	JSON	file
The	format	is	easy	to	export	from	a	design	tool
Currently	a	plugin	for	Blender	is	available

1 import	Qt3D.Animation	2.9
2 ...
3
4 AnimationClipLoader	{	source:	"qrc:/animation.json"	}
5 ...

Demo	qt3d/ex-animationclip-loader

qmlElement://AnimationClip
qmlElement://AnimationClipLoader


How	to	Run	an	Animation	Clip?

Animation	with	Qt	3D p.22

1 import	Qt3D.Animation	2.9
2 ...
3 ClipAnimator	{
4     clip:	AnimationClipLoader	{	source:	"qrc:/animation.json"	}
5
6     channelMapper:	ChannelMapper	{
7         ChannelMapping	{
8             channelName:	"Location"
9             target:	transform
10             property:	"translation"
11         }
12         ChannelMapping	{
13             channelName:	"Rotation"
14             target:	transform
15             property:	"rotation"
16         }
17         ChannelMapping	{
18             channelName:	"Color"
19             target:	material
20             property:	"ambient"
21         }
22     }
23 }
24 ...

Demo	qt3d/ex-animationclip-loader



Animation	Blending

Animation	with	Qt	3D p.23

It	is	often	useful	to	combine	several	animations	into	one

Makes	it	easier	to	tune	simpler	animations	separately,	then	let	the	engine
combine	them

This	is	done	via	blending	operators

Makes	it	possible	to	create	new	variations	from	a	basic	set	of	animations

Typical	examples	in	games	are:
A	character	walking	then	starting	to	run
A	character	jumping	while	walking	or	during	the	transition	between
walking	and	running



BlendedClipAnimator

Animation	with	Qt	3D p.24

1 import	Qt3D.Animation	2.9
2 ...
3 BlendedClipAnimator	{
4     blendTree:	AdditiveClipBlend	{
5     additiveFactor:	0.4
6     baseClip:	LerpClipBlend	{
7         blendFactor:	0.2
8         startClip:	ClipBlendValue	{
9             clip:	AnimationClipLoader	{	source:	"qrc:/walk.json"	}
10         }
11         endClip:	ClipBlendValue	{
12             clip:	AnimationClipLoader	{	source:	"qrc:/run.json"	}
13         }
14     }
15     additiveClip:	ClipBlendValue	{
16         clip:	AnimationClipLoader	{	source:	"qrc:/jump.json"	}
17     }
18 }
19 ...

Demo	qt3d/sol-toyplane-pilot



Advances	in	Qt	3D

New	PBR	Materials p.25

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



Metal/Rough	Materials

New	PBR	Materials p.26

Qt	3D	5.9	introduces	two	new	materials	with	much	more	realistic	rendering
Qt3DExtras::QMetalRoughMaterial
Qt3DExtras::QTexturedMetalRoughMaterial

This	is	based	on	proper	physics	to	model	the	lighting

It	also	introduces	new	richer	lights

Qt	Demo	qt3d-examples/pbr-textured-cube

Qt	Demo	qt3d-examples/pbr-sphere

Qt	Demo	qt3d-examples/pbr-spheres

class://Qt3DExtras::QMetalRoughMaterial
class://Qt3DExtras::QTexturedMetalRoughMaterial


Environment	Light	(since	5.9)

New	PBR	Materials p.27

1 import	Qt3D.Core	2.0
2 import	Qt3D.Render	2.9
3 ...
4
5 components:	[
6     EnvironmentLight	{
7         irradiance:	TextureLoader	{	...	}
8         specular:	TextureLoader	{	...	}
9     }
10 ]

Demo	qt3d/ex-lights-qml



Sky	Box	(since	5.9)

New	PBR	Materials p.28

1 import	Qt3D.Extras	2.9
2 ...
3
4 SkyboxEntity	{
5     baseName:	"radianceTexture"
6     extension:	".dds"
7     gammaCorrect:	true	//	Since	5.9
8 }

Demo	qt3d/ex-lights-qml



Advances	in	Qt	3D

Painted	Textures p.29

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



Integrating	QPainter	Code	(since	5.8)

Painted	Textures p.30

Often,	we	have	legacy	QPainter	code

Needs	integration	to	be	usable	with	Textures

Provided	by	Qt3DRender::QPaintedTextureImage
Inherit	from	it
Override	the	paint()	function
Use	like	any	other	TextureImage

Demo	qt3d/ex-painted-cube

class://QPainter
qmlElement://Texture
class://Qt3DRender::QPaintedTextureImage
qmlElement://TextureImage


Advances	in	Qt	3D

Integrating	Qt	Quick	with	Qt	3D	again p.31

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



The	Scene2D	Element	(since	5.9)

Integrating	Qt	Quick	with	Qt	3D	again p.32

Provided	by	the	QtQuick.Scene2D	module

Takes	an	Item	as	child	which	will	be	your	whole	2D	scene

It	renders	the	2D	scene	into	a	RenderTargetOutput	controlled	by	the
output	property
Its	texture	can	be	used	by	any	material

The	entities	property	allows	to	declare	on	which	entities	the	texture	will	be
used
Necessary	for	mouse	event	handling
Requires	PickingSettings.TrianglePicking	to	be	set	to	have	the	triangle
information

Mouse	events	are	only	accepted	if	the	mouseEnabled	property	is	true

Demo	qt3d/ex-samegame

qmlElement://QtQuick.Scene2D
qmlElement://Item
qmlElement://RenderTargetOutput


Advances	in	Qt	3D

Capturing	the	Rendering p.33

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



The	RenderCapture	Element	(since	5.9)

Capturing	the	Rendering p.34

Allows	to	create	screenshots	of	the	scene	rendering

Also	allows	to	debug	complex	multi-pass	rendering
One	can	save	as	an	image	one	of	the	intermediate	steps

RenderCapture	is	a	FrameGraphNode

Each	time	a	capture	is	needed,	a	call	to	requestCapture()	is	necessary
Such	requests	are	processed	asynchronously

qmlElement://RenderCapture
qmlElement://FrameGraphNode


Debugging	Multi-Pass	Rendering

Capturing	the	Rendering p.35

The	scene	allows	to	select	objects	by	clicking
on	them

A	selected	object	glows

The	effect	is	implemented	using	a	multi-pass
render

With	RenderCapture	it	is	easier	to	see	what
each	stage	is	doing

Demo	qt3d/sol-screenshot

qmlElement://RenderCapture


Advances	in	Qt	3D

Level	of	Detail p.36

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



Complex	Objects	vs	Distance

Level	of	Detail p.37

Scenes	often	contain	complex	objects

Such	objects	are	expensive	to	display

Does	it	still	make	sense	if	they	are	far	from	the	camera?

With	level	of	detail	management,	simpler	objects	can	be	displayed	instead

This	feature	is	provided	with	LevelOfDetail	and	LevelOfDetailLoader

qmlElement://LevelOfDetail
qmlElement://LevelOfDetailLoader


The	LevelOfDetail	Element	(since	5.9)

Level	of	Detail p.38

1 import	Qt3D.Render	2.9
2 ...
3
4 SphereMesh	{
5     slices:	rings
6     rings:	[30,	6,	4][lod.currentIndex]
7 },
8 LevelOfDetail	{
9     id:	lod
10     camera:	mainCamera
11     thresholds:	[100,	500,	1000]
12     thresholdType:	LevelOfDetail.DistanceToCameraThreshold
13 }
14 ...

Demo	qt3d/ex-lod

Demo	qt3d/sol-ogrehead



Advances	in	Qt	3D

Displaying	Text p.39

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



Extruded	Text	Meshes	(since	5.9)

Displaying	Text p.40

Generating	geometry	out	of	text	is	done	with
ExtrudedTextGeometry	or	ExtrudedTextMesh

They	can	be	used	like	any	other	Geometry	or
GeometryRenderer

font	and	text	are	controlled	using	properties

The	length	of	the	extrusion	is	controlled	with
the	depth	property

Demo	qt3d/ex-text-3d

qmlElement://ExtrudedTextGeometry
qmlElement://ExtrudedTextMesh
qmlElement://Geometry
qmlElement://GeometryRenderer


Distance	Field	Text	(since	5.9)

Displaying	Text p.41

Distance	field	text	is	provided	by
Text2DEntity

This	is	a	full	fledged	Entity	to	put	in	the
object	tree

font,	color	and	text	are	controlled	using
properties

The	size	of	the	surface	on	which	the	text	is
rendered	can	be	controlled	via	width	and
height

Demo	qt3d/ex-text-2d

qmlElement://Text2DEntity
qmlElement://Entity


Advances	in	Qt	3D

The	Future	of	Qt	3D p.42

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Input	Handling

Animation	with	Qt	3D

New	PBR	Materials

Painted	Textures

Integrating	Qt	Quick	with	Qt	3D	again

Capturing	the	Rendering

Level	of	Detail

Displaying	Text

The	Future	of	Qt	3D



Shader	Graphs	(coming	in	5.10)

The	Future	of	Qt	3D p.43

Currently	difficult	to	reuse	and	tune	materials

Forced	to	fork	the	shader	implementations...

Introducing	ShaderProgramBuilder	which	allows	to	load	shaders	from	a
graph

JSON	format

Finer	grained	building	blocks	which	can	be	reused	and	reorganized

qmlElement://ShaderProgramBuilder


Shader	Graphs:	QMetalRoughMaterial

The	Future	of	Qt	3D p.44



Shader	Graphs	cont'd

The	Future	of	Qt	3D p.45



What	does	the	future	hold	for	Qt	3D?

The	Future	of	Qt	3D p.46

Qt	3D	Core
Efficiency	improvemments
Backend	threadpool	and	job	handling	improvements	-	jobs	spawning	jobs

Qt	3D	Render
Billboards	-	camera	facing	entities
Particle	systems

Qt	3D	Input
Additional	input	device	support
3D	mouse	controllers,	game	controllers

Enumerated	inputs	such	as	8-way	buttons,	hat	switches	or	dials



What	does	the	future	hold	for	Qt	3D?

The	Future	of	Qt	3D p.47

New	aspects:
Collision	Detection	Aspect
Allows	to	detect	when	entities	collide	or	enter/exit	volumes	in	space

Animation	Aspect
Skeletal	animation
Morph	target	animation
Removes	animation	workload	from	main	thread

Physics	Aspect
Rigid	body	and	soft	body	physics	simulation

AI	Aspect,	3D	Positional	Audio	Aspect	...

Tooling:
Design	time	tooling	-	scene	editor
Build	time	tooling	-	asset	conditioners	for	meshes,	textures	etc.



Thank	you!

www.kdab.com

kevin.ottens@kdab.com


