

A Multi-Agent System for Building Dynamic Ontologies

Kévin Ottens, Marie-Pierre Gleizes & Pierre Glize

Institut de Recherche en Informatique de Toulouse (IRIT) SMAC team

AAMAS 2007 - May 14-18 2007, Honolulu, Hawai'i, USA.

Plan

- 1 Introduction
- 2 Introducing the Dynamo System
- 3 Distributed Clustering Algorithm
- 4 Multi-Criteria Hierarchy
- 5 Discussion & Perspectives

Plan

- 1 Introduction
- 2 Introducing the Dynamo System
- 3 Distributed Clustering Algorithm
- 4 Multi-Criteria Hierarchy
- 5 Discussion & Perspectives

Introduction

Current situation

- Text analysis makes ontology building easier
- NLP analysis examination is a difficult and slow process
- Emerging technics based on machine learning

Our proposal

- Keep the user in the production loop
- Allow the "Living Design" of ontologies
- Reorganization following user modifications

Plan

- 1 Introduction
- 2 Introducing the Dynamo System
- 3 Distributed Clustering Algorithm
- 4 Multi-Criteria Hierarchy
- 5 Discussion & Perspectives

Overview

Term Network

- Produced by Syntex
- "Head-Expansion" graph
 - knowledge engineering from text
 - knowledge engineering
- Term contexts used to compute similarity

Multi-Agent System

- Each agent represents a concept of the taxonomy
- Each agent tries to position itself
- Based on a condition/action rule set

- 1 Introduction
- 2 Introducing the Dynamo System
- 3 Distributed Clustering Algorithm
- 4 Multi-Criteria Hierarchy
- 5 Discussion & Perspectives

Distributed Clustering Algorithm Local view

Steps

- Evaluating similarity and "votes"
- 2 Partitioning and intermediate layer creation
- Parent change

Distributed Clustering Algorithm Local view

Steps

- Evaluating similarity and "votes"
- Partitioning and intermediate layer creation
- 3 Parent change

Distributed Clustering Algorithm Local view

Steps

- Evaluating similarity and "votes"
- 2 Partitioning and intermediate layer creation
- Parent change

Distributed Clustering Algorithm Global View

Experimental Complexity Results

- Average complexity: $O(n^2 \log(n))$
- Maximum variance: around 5%

Qualitative Point of View

Automated run

- Permanent view on the built hierarchy
- Allow to obtain a "first draft"

User modification

- No algorithm adjustment required
- Dynamicity, revision of the structure

Plan,

- 1 Introduction
- 2 Introducing the Dynamo System
- 3 Distributed Clustering Algorithm
- 4 Multi-Criteria Hierarchy
- 5 Discussion & Perspectives

Head Coverage Rules Intended Behavior

Observations

- Similarity can't be always computed for term pairs
- Humans have specific heuristics for low-level structuring

Goal

- Take care of those terms
- Implement a similar heuristic

Parent Adequacy Function

- The best parent for C is the P agent that maximizes a(P, C).
- When an agent C is unsatisfied by its parent P, it evaluates $a(B_i, C)$ with all its brothers (noted B_i) the one maximizing $a(B_i, C)$ is then chosen as the new parent.

Managing Several Criteria

How?

- Keeping it simple
 - Local criteria
 - Nominal values for those criteria
- Use cooperation heuristic

Cooperation

- Minimizing non-cooperation
- Priority system
 - Determine the current problems
 - Find the most urgent one
 - Try to fix it

Managing Several Criteria Actual Implementation

Minimize non cooperation

- \blacksquare $\mu_H(A)$: "head coverage" non cooperation degree of A
- \blacksquare $\mu_B(A)$: "brotherhood" non cooperation degree of A
- \blacksquare $\mu_M(A)$: "message" non cooperation degree of A
- $\mu(A) = \max(\mu_H(A), \mu_B(A), \mu_M(A))$

Take care of the worst problem first

- $\mu(A) = \mu_H(A) \rightarrow \text{Try to find a better parent}$
- $\mu(A) = \mu_B(A) \rightarrow$ Improve structuring through clustering
- $\mu(A) = \mu_M(A) \rightarrow \text{Process other agent message}$

Experimental Complexity Revisited

- Average complexity: $O(n^3)$
- Maximum variance: around 0.6%

Plan

- 1 Introduction
- 2 Introducing the Dynamo System
- 3 Distributed Clustering Algorithm
- 4 Multi-Criteria Hierarchy
- 5 Discussion & Perspectives

Discussion

Advantages of our approach

- Easier system/ontologist coupling
- Possible distribution on a network

Current limitations

- Results tend to depend on the add order
- Tend to produce binary trees only (except on leaves)

Perspectives

Concerning knowledge engineering

- Get closer to a taxonomy tree
- Find non taxonomic relations

Concerning multi-agent systems

- Improve the clustering algorithm
 - Remove the dependency on add order
 - Optimize
- Test this algorithm in other domains

Works in Progress, Conclusion

In progress...

- Taxonomy production
 - Tree pruning
 - Not only binary tree
- Evaluate the system on more corpora

Conclusion

- Evolving structure is possible in this field
- Performances are acceptable
- More efforts needed...

Questions?

Kévin Ottens

ottens@irit.fr