A Multi-Agent System for Building Dynamic Ontologies

Kévin Ottens, Marie-Pierre Gleizes & Pierre Glize

Institut de Recherche en Informatique de Toulouse (IRIT)
SMAC team

AAMAS 2007 – May 14–18 2007, Honolulu, Hawai’i, USA.
Plan

1. Introduction
2. Introducing the Dynamo System
3. Distributed Clustering Algorithm
4. Multi-Criteria Hierarchy
5. Discussion & Perspectives
Plan

1. Introduction

2. Introducing the Dynamo System

3. Distributed Clustering Algorithm

4. Multi-Criteria Hierarchy

5. Discussion & Perspectives
Introduction

Current situation

- Text analysis makes ontology building easier
- NLP analysis examination is a difficult and slow process
- Emerging technics based on machine learning

Our proposal

- Keep the user in the production loop
- Allow the ”Living Design” of ontologies
- Reorganization following user modifications
Plan

1. Introduction
2. Introducing the Dynamo System
3. Distributed Clustering Algorithm
4. Multi-Criteria Hierarchy
5. Discussion & Perspectives
Overview

Architecture

Multi-Agent System

Ontologist Interface

Term network

Concept Agent

Term

Terms Extraction Tool
Overview

Term Network
- Produced by Syntex
- "Head-Expansion" graph
 - knowledge engineering from text
 - knowledge engineering
- Term contexts used to compute similarity

Multi-Agent System
- Each agent represents a concept of the taxonomy
- Each agent tries to position itself
- Based on a condition/action rule set
Plan

1. Introduction

2. Introducing the Dynamo System

3. Distributed Clustering Algorithm

4. Multi-Criteria Hierarchy

5. Discussion & Perspectives
Distributed Clustering Algorithm

Local view

Steps

1. Evaluating similarity and "votes"
2. Partitioning and intermediate layer creation
3. Parent change
Distributed Clustering Algorithm

Local view

Steps

1. Evaluating similarity and "votes"
2. Partitioning and intermediate layer creation
3. Parent change
Steps

1. Evaluating similarity and "votes"
2. Partitioning and intermediate layer creation
3. Parent change
Experimental Complexity Results

- Average complexity: $O(n^2 \log(n))$
- Maximum variance: around 5%
Qualitative Point of View

Automated run
- Permanent view on the built hierarchy
- Allow to obtain a "first draft"

User modification
- No algorithm adjustment required
- Dynamicity, revision of the structure
Plan

1. Introduction
2. Introducing the Dynamo System
3. Distributed Clustering Algorithm
4. Multi-Criteria Hierarchy
5. Discussion & Perspectives
Observations

- Similarity can’t be always computed for term pairs
- Humans have specific heuristics for low-level structuring

Goal

- Take care of those terms
- Implement a similar heuristic

Parent Adequacy Function

- The best parent for C is the P agent that maximizes $a(P, C)$.
- When an agent C is unsatisfied by its parent P, it evaluates $a(B_i, C)$ with all its brothers (noted B_i) the one maximizing $a(B_i, C)$ is then chosen as the new parent.
Managing Several Criteria

Guidelines

How?

- Keeping it simple
 - Local criteria
 - Nominal values for those criteria
- Use cooperation heuristic

Cooperation

- Minimizing non-cooperation
- Priority system
 - Determine the current problems
 - Find the most urgent one
 - Try to fix it
Minimize non cooperation

- $\mu_H(A)$: "head coverage" non cooperation degree of A
- $\mu_B(A)$: "brotherhood" non cooperation degree of A
- $\mu_M(A)$: "message" non cooperation degree of A
- $\mu(A) = \max(\mu_H(A), \mu_B(A), \mu_M(A))$

Take care of the worst problem first

- $\mu(A) = \mu_H(A) \rightarrow$ Try to find a better parent
- $\mu(A) = \mu_B(A) \rightarrow$ Improve structuring through clustering
- $\mu(A) = \mu_M(A) \rightarrow$ Process other agent message
Experimental Complexity Revisited

- Average complexity: $O(n^3)$
- Maximum variance: around 0.6%
Discussion

Advantages of our approach

- Easier system/ontologist coupling
- Possible distribution on a network

Current limitations

- Results tend to depend on the add order
- Tend to produce binary trees only (except on leaves)
Perspectives

Concerning knowledge engineering
- Get closer to a taxonomy tree
- Find non taxonomic relations

Concerning multi-agent systems
- Improve the clustering algorithm
 - Remove the dependency on add order
 - Optimize
- Test this algorithm in other domains
In progress...

- Taxonomy production
 - Tree pruning
 - Not only binary tree
- Evaluate the system on more corpora

Conclusion

- Evolving structure is possible in this field
- Performances are acceptable
- More efforts needed...
Questions?